Working
group 1: VCA
- Visualisation and computer
animation
ICTMT
5, Klagenfurt, 6-9 August 2001
(Schedule,
tentative as of 20. 6. 2001)
Chair: Gert Kadunz
Tuesday 10:30 - 11:15 Chair: Gert Kadunz
The role of dynamic geometry packages in visualisation and animation
Katherine Mackrell (UK, KateMackrell@care4free.net)
Tuesday 16:15 - 17:00 Chair: Gert Kadunz
Autograph:
Dynamic Coordinate Geometry and Statistics
Douglas
Butler (UK, debutler@argonet.co.uk)
Tuesday 17:00 - 17:45 Chair: Gert Kadunz
IMMENSE
- a tool for visualization and mathematical experiments
Susanne
Saminger (Austria, guenter.pilz@algebra.uni-linz.ac.at)
Wednesday 10:30 - 11:15 Chair: Gert Kadunz
Mathematica
graphics in the internet
Ralf
Schaper (Germany, rascha@mathematik.uni-kassel.de)
Thursday 10:30 - 11:15 Chair: Gert Kadunz
Mittels
Computergraphik zu mathematischen Entdeckungen
Grosio
Stanilov (Bulgaria, stanilov@fmi.uni-sofia.bg)
Thursday 16:15 - 17:00 Chair: Gert Kadunz
Cubic
Section by moving plane
Yulian
Tsankov (Bulgaria, ucankov@fmi.uni-sofia.bg)
Abstracts:
Douglas
Butler, UK:
Autograph: Dynamic Coordinate Geometry and Statistics
This
presentation will demonstrate how dynamic and dependent objects can
be used to enhance understanding in the teaching of mathematics at
school and college level, and how they give the teacher an exciting
new repertoire of moving images.
Katherine
Mackrell, UK:
The
role of dynamic geometry packages in visualisation and animation
This
session will comprise a report of discussions held at the CabriWorld
conference in Montreal in June 2001 regarding the use of
Cabri-Geometre to create interactive teaching materials using visual
imagery and animation to introduce mathematics from a wide range of
areas.
Susanne Saminger, Austria:
IMMENSE - a tool for visualization and mathematical experiments
***
Ralf
Schaper, Germany: Mathematica
graphics in the internet
An
extended version of LiveGraphics3D will be presented.
Grosio
Stanilov, Bulgaria:
Mittels
Computergraphik zu mathematischen Entdeckungen
Wir
untersuchen die Parallelogramm-und die Wuerfelschnitten nur mittels
Schulmathematik.Um die Besonderkeiten der Laengenschnitten und die
Flaecheninhalten zu entdecken,verwenden wir zunaechst die
Computergraphik.Wir erreichen zu wichtigen Saetzen in der
Analysis,zur besonderen Schnitten und zur neuen exotischen Flaechen
in der Differentialgeometrie.Einiges ist auch in die Bildkunst zu
verwenden.In der hyperbolischen Geometrie erreichen wir zu einer
Konstante,die die Seiten des Morleys Dreiecks fuer jedes beliebigen
Dreiecks von oben beschraenkt.
Yulian
Tsankov, Bulgaria:
Cubic
Section by moving plane
By
Computer graphic and Schoolmathematic we investigate all cubic
sections. They depend of three parameters. If we fix two of them, the
interval (-infinity, +infinity) for the third parameter divided in
six subintervals, where the sections are from different type. We
visualize these sections and corresponding them area functions. The
dividing - points arise some surfaces geometrically connected with
the cube.
|