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Foreword

More than twenty years ago graph theorists from Leoben and Ljubljana began to meet informally
but regularly in the “Ljubljana-Leoben Seminar on Combinatorics”. The iron curtain was not so
tight any more and the short distance between Ljubljana and Leoben made it easy to cooperate
in those dark pre-internet times. Within the years a fruitful collaboration arose and the Seminar
kept growing. Since 1989 we even have an official program for these meetings.

Although organized mainly from Leoben and Ljubljana the seminar took place in many locations
in Slovenia and Austria and we are grateful that the University of Klagenfurt, halfway between
Leoben and Ljubljana, hosts it this time.

We thank all participants for their interest and their contributions to the scientific program, and
are looking forward to an interesting, productive and enjoyable meeting!

Franz Rendl, Klagenfurt

Wilfried Imrich, Leoben

Bojan Mohar and Tomaž Pisanski, Ljubljana

Sandi Klavžar and Boštjan Brešar, Maribor

April 2004
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Program

Monday, April 26, 2004

11:15 11:30 Opening and welcome addresses

11:30 12:00 Norbert Seifter Transitive Digraphs

12:00 14:00 Lunch Break

14:00 14:30 Sandi Klavžar Θ-graceful labelings of partial cubes
14:30 15:00 Josef Leydold Faber-Krahn Type Inequalities for

(Non-regular) Trees

15:00 15:30 Coffee Break

15:30 16:30 Peter Mihók Additive and hereditary properties of
systems of objects

16:30 18:00 Workshops

19:00 Conference Dinner
Restaurant Weidenhof am See
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Tuesday, April 27, 2004

09:00 09:30 Igor Dukanović A Semidefinite Programming Based Heuristic
for Graph Coloring

09:30 10:00 Janez Povh How to approximate the bandwidth of a graph
using semidefinite programming ?

10:00 10:30 Coffee Break

10:30 11:00 Sergio Cabello Planar embeddability of the vertices of a
graph using a fixed point set is NP-hard

11:00 11:30 Iztok Peterin On almost-median graphs
11:30 12:00 Wilfried Imrich On edge-preserving maps of graphs

12:00 14:00 Lunch break

14:00 15:00 Problem session

15:30 Excursion - Herzogstuhl - Burg Hochosterwitz - Magdalensberg

Wednesday, April 28, 2004

09:00 09:30 Boštjan Brešar On Integer Domination in Graphs and
Vizing-like Problems

09:30 10:00 Janez Žerovnik Weak Reconstruction of Strong Product Graphs

10:00 10:30 Coffee Break

10:30 11:00 Drago Bokal Circular chromatic number of oriented
hexagonal systems

11:00 11:30 Aleksander Vesel Characterisation of the Resonance Graphs
of Catacondensed Hexagonal Graphs

11:30 12:00 Petra Žigert Fibonacci cubes are the resonance graphs
of fibonaccenes

12:00 End of lectures and lunch
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Abstracts

Abstracts are listed alphabetically with respect to Presenting Author.

Circular chromatic number of oriented hexagonal systems
Drago Bokal, Gašper Fijavž, Martin Juvan, Bojan Mohar and Andrej Vodopivec

University of Ljubljana, FMF, Jadranska 19, 1000 Ljubljana, Slovenia

The circular chromatic number of arbitrary orientation of any linear hexagonal system is deter-
mined. It depends on the existence of certain oriented substructure and is always of the form
q = 5k+1

4k+1 where 1 ≤ k ≤ n
2 is an integer and n is the number of hexagons.

On Integer Domination in Graphs and Vizing-like Problems
Boštjan Brešar, Michael A. Henning, and Sandi Klavžar

University of Maribor,FEECS, Smetanova 17, 2000 Maribor, Slovenia

In this talk we consider {k}-dominating functions in graphs (or integer domination as we shall
also say) that was first introduced by Domke, Hedetniemi, Laskar, and Fricke. For k ≥ 1 an
integer, a function f : V (G) → {0, 1, . . . , k} defined on the vertices of a graph G is called a {k}-
dominating function if the sum of its function values over any closed neighborhood is at least k.
The weight of a {k}-dominating function is the sum of its function values over all vertices. The {k}-
domination number of G is the minimum weight of a {k}-dominating function of G. We studied
the {k}-domination number on the Cartesian product of graphs, mostly on problems related to
the famous Vizing’s conjecture. Three generalizations of the inequality by Clark and Suen will be
presented.

Planar embeddability of the vertices of a graph using a fixed
point set is NP-hard

Sergio Cabello

University of Ljubljana, Department of Mathematics, Jadranska 19, 1000 Ljubljana, Slovenia

Let G be a graph with n vertices and let P be a set of n points in the plane. We show that deciding
whether there is a planar straight-line embedding of G such that its vertices are embedded onto
the points P is NP-complete, even when G is 2-connected and 2-outerplanar. This settles an open
problem posed by Bose, by Brandenberg et al., and by Kaufmann and Wiese.

5



A Semidefinite Programming Based Heuristic for Graph Coloring
Igor Dukanović and Franz Rendl

University of Maribor, EPF, Razlagova 14, 2000 Maribor, Slovenia
Universität Klagenfurt, Institut für Mathematik, A-9020 Klagenfurt, Austria

A k-coloring of a simple undirected graph G(V,E) is a mapping x : V → {1, ..., k} such that

(ij) ∈ E ⇒ c(i) 6= c(j) (1)

This traditional graph (vertex) coloring representation induces permutation redundancy as c ◦ π,
where π is any permutation of numbers 1...k, is also a k-coloring symmetric to c. We see that
the graph coloring problem is in fact a partitioning problem. Therefore we introduce a coloring
relation Rc defined by

iRcj ⇐⇒ c(i) = c(j)

Any relation R is represented by a 0-1 matrix X defined by

xij = 1 ⇐⇒ iRj (2)

This matrix is positive semidefinite if and only if it represents an equivalence relation, and col-
oring relation is such. Denote by J the matrix of all ones, and let X represent any symmetric,
homogeneous relation on the vertex set V satisfying (1). Then

lX � J ⇐⇒ l ≥ k & matrix X represents a k-coloring

with a straightforward corollary

χ(G) = min{l : lX � J,X = XT , xii = 1∀i ∈ V, xij = 0∀(ij) ∈ E, xij ∈ {0, 1}}

By dropping the integrality condition xij ∈ {0, 1} in this NP-hard problem we obtain Lovász theta
number

θ(Ḡ) = min{l : lX � J,X = XT , xii = 1∀i ∈ V, xij = 0∀(ij) ∈ E} (3)

a well known polynomial lower bound on the chromatic number of a graph. Let X∗ be a matrix
at which an optimum of (3) is attained. Then (2) suggests that a large element xij

.
= 1 should

be interpreted as color vertices i and j with the same color. Since θ(Ḡ) and X∗ can be computed
to any fixed precision in polynomial time by semidefinite programming, this idea motivates a
Karger-Motwani-Sudan like recursive heuristic for graph coloring.

References

[1] P. GALLINIER and J.K. HAO. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3:379–397, 1999.

[2] D. KARGER, R. MOTWANI, and M. SUDAN. Approximate graph coloring by semidefinite
programming. Journal of the Association for Computing Machinery, 45:246–265, 1998.

[3] L. LOVÁSZ. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25:1–7,
1979.
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Θ-graceful labelings of partial cubes
Boštjan Brešar and Sandi Klavžar

University of Maribor, Pf, Koroška cesta 160, 62000 Maribor, Slovenia

The Ringel-Kotzig conjecture asserting that all trees are graceful remains one of the central prob-
lems in the area of graph labelings. We introduce Θ-graceful labelings of partial cubes as a natural
extension of graceful labelings of trees. Several classes of partial cubes are Θ-graceful, for instance
even cycles, Fibonacci cubes, and (newly introduced) lexicographic subcubes. The Cartesian prod-
uct of Θ-graceful partial cubes is again such and we wonder whether in fact any partial cube is
Θ-graceful. A connection between Θ-graceful labelings and representations of integers in certain
number systems is also established.

On edge-preserving maps of graphs
Wilfried Imrich

Chair of Applied Mathematics, Montanuniversität Leoben, 8700 Leoben, Austria

A contraction of a graph G is a mapping f : V (G) → V (G) that preserves or contracts edges,
that is, whenever x, y ∈ E(G), then f(x) = f(y or f(x)f(y) ∈ E(G). Contractions are also known
as weak endomorphisms or edge-preserving maps and have a plentyful variety of fixed subgraph
properties. Let us just mention the well known fact that not only every automorphism, but also
every contraction of a finite tree fixes a vertex or stabilizes an edge.

These results have been generalized to infinite graphs by Bandelt, Chastand, Halin, Polat, Quilliot,
Sabidussi, and Tits mainly with the aim to find conditions that ensure the existence of a finite
fixed subgraph rather than fixed points at infinity.

It is the aim of this talk to convey the spirit of the basic results and to add one about infinite
median graphs.

Faber-Krahn Type Inequalities for (Non-regular) Trees
Josef Leydold

Department for Applied Statistics and Data Processing, University of Economics and Business
Administration, Augasse 2-6, 1090 Vienna, Austria

The Faber-Krahn theorem states that among all bounded domains with the same volume in Rn

(with the standard Euclidean metric), a ball that has lowest first Dirichlet eigenvalue. Recently
it has been shown that a similar result holds for (semi-)regular trees. In this article we show that
such a theorem also hold for other classes of (not necessarily non-regular) trees. However, for
these new results no couterparts in the world of the Laplace-Beltrami-operator on manifolds are
known.
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Additive and hereditary properties of systems of objects
Peter Mihók

Department of Applied Mathematics, Faculty of Economics, Technical University, B. Němcovej,
040 01 Košice, Slovak Republic, and Mathematical Institute, Slovak Academy of Science,

Grešákova 6, 040 01 Košice, Slovak Republic

We use the basic elementary notions of category theory. A concrete category C is a collection of
objects and arrows called morphisms. An object in a concrete category C is a set with structure.
We will denote the ground-set of the object A by V (A). The morphism between two objects is a
structure preserving mapping. Obviously, the morphisms of C have to satisfy the axioms of the
category theory. The natural examples of concrete categories are: Set of sets, FinSet of finite
sets, Graph of graphs, Grp of groups, Poset of partially ordered sets with structure preserving
mappings, called homomorphisms of corresponding structures.

For example, a simple finite hypergraphH = (V,E) can be considered as a system of its hyperedges
E = {e1, e2, . . . , em}, where edges are finite sets and the set of its vertices V (H) is a superset of
the union of hyperedges, i.e. V ⊇

⋃m

i=1 ei. The following definition gives a natural generalization
of graphs and hypergraphs.

Let C be a concrete category. A simple system of objects of C is an ordered pair S = (V,E),
where E = {A1, A2, . . . , Am} is a finite set of the objects of C, such that the ground-set V (Ai)
of each object Ai ∈ E is a finite set with at least two elements (i.e. there are no loops) and
V ⊇

⋃m

i=1 V (Ai). The class of all simple systems of objects of C will be denoted by I(C). The
symbols K0 and K1 denotes the null system K0 = (∅, ∅) and system consisting of one isolated
element, respectively. We will assume that by renaming (relabeling) the elements of the object A
only, we obtain always an object A∗ isomorphic to A in every concrete category Cl

For example, graphs can be viewed as systems of objects of a concrete category of two-element sets
with bijections as arrows, digraphs are systems of objects of the category of two-element posets,
hypergraps are finite set systems i.e. I(FinSet), etc. There are nice applications of systems of
objects in information systems and computer science. A WAN network is a system on LANs,
Internet is a system of WANs and the isomorphism in the category of LANs can be defined in
a different way depending on the user requirements. The elements of the LANs are obviousely
computers. Let us remark, that the L-structures generalizing graphs, digraphs and k-uniform
hypergraphs are special systems of objects on category of relational structures.

To generalize the results on generalized colourings of graphs to arbitrary simple systems of objects
we need to define isomorphism of systems. We can do this in a natural way: Let S1 = (V1, E1)
and S2 = (V2, E2) be two simple systems of objects of a given concrete category C. The systems
S1 and S2 are said to be isomorphic if there is a pair of bijection:

φ : V1 ←→ V2; ψ : E1 ←→ E2,

such that if ψ(A1i) = A2j then φ/V (A1i) : V (A1i) ←→ V (A2j) is an isomorphism of the objects
A1i ∈ E1 and A2j ∈ E2 in the category C. The homomorphism of the systems can be defined in
a similar way.

The disjoint union of the systems S1 and S2 is the system S1 ∪ S2 = (V1 ∪ V2, E1 ∪E2), where we
assume that V1 ∩ V2 = ∅. A system is said to be connected if it cannot be expressed as a disjoint
union of two systems.

The subsystem of S1 induced by the set U ⊆ V (S1) is S1[U ], with objects E(S1[U ]) := {A1i ∈
E(S1)|V (A1i) ⊆ U}. S2 is an induced-subsystem of S1 if it is isomorphic to S1[U ] for some
U ⊆ V (S1).

Using these definitions we can define, analogously as for graphs, that an additive induced-hereditary
property of simple systems of objects of a category C is any class of systems closed under isomor-
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phism, induced-subsystems and disjoint union of systems. Let us denote by MM a(C) the set of
all additive induced-hereditary properties of simple systems of objects of a category C.

In our talk we will consider the structure of additive hereditary properties of systems of objects.

On Almost-Median Graphs
Iztok Peterin

Faculty of Electrical Engineering and Computer Science
University of Maribor, 2001 Maribor, P.O.Box 238,Slovenia

A short history of almost-median graphs will be represented. Following with two nice families of
planar almost-median graphs and a new characterization of almost-median graphs.

How to approximate the bandwidth of a graph using
semidefinite programming?

Janez Povh and Franz Rendl

School of business and management, Novo mesto, Slovenia
Institut fur Mathematik, University of Klagenfurt, Universitätsstraße 65-67, A-9020 Klagenfurt,

Austria

The bandwidth problem is an old problem from combinatorial optimization, where, given a graph
G = (V, E), one looks for such a labelling Φ : V → {1, 2, ..., |V |}, which minimizes a maximal
distance σ∞(G,Φ) = max(uv)∈E |Φ(u) − Φ(v)| over all possible labellings. Let denote σ∞(G) =
minΦ σ∞(G,Φ). The problem how to find the σ∞(G) or the optimal labelling is proven to be
NP-hard problem. In the year 2000 Blum et al. proposed in [1] the semidefinite relaxation of
this problem and suggested the rounding scheme, which gives the labeling Φ∗ with σ∞(G,Φ∗) ≤
O(

√

n/b log n)σ∞(G), where b is the optimal value of the semidefinite relaxation.

They argued its polynomial time complexity with ellipsoidal method, so the result seemed to have
only a theoretical value. We’re going to present heuristics for solving this SDP relaxation, which
relies on the interior point methods and on the bundle method and gives good results in prac-
tice (much better than the theoretical guaranty does), although I can prove its polynomial time
complexity only for some small classes of graphs. We’re also going to present how to transform
the proposed randomized algorithm into deterministic one on some specific classes of graphs (e.
g. caterpillars) and how good results do we get this way.

Bibliography:

[1] Blum, A., Konjevod, G. Ravi, R., Vempala, S..: Semidefinite relaxations for minimum band-
width and other vertex-ordering problems, Theor. Comput. Sci. 235 (2000), 25-42.

Transitive Digraphs
Norbert Seifter

Chair of Applied Mathematics, Montanuniversität Leoben, A-8700 Leoben, Austria

For decades undirected transitive graphs have been a topic of deep investigations. Although
many of the methods developed for undirected graphs can also be applied to undirected graphs
(digraphs), the problems arising in the context of digraphs are quite different. In this talk we
present some of these problems.
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Characterisation of the Resonance Graphs of Catacondensed
Hexagonal Graphs

Aleksander Vesel

Department of Mathematics,PeF, University of Maribor
Koroška 160, SI–2000 Maribor, Slovenia

The vertex set of the resonance graph of a hexagonal graph G consists of 1-factors of G, two
1-factors being adjacent whenever their symmetric difference forms the edge set of a hexagon of
G. A characterization of the resonance graphs of catacondensed hexagonal graph is presented.
The characterisation is the basis for the algorithm that recognizes the resonance graph of a cata-
condensed hexagonal graph. Moreover, the modified algorithm can be applied for recognizing the
Fibonnacci cubes.

Weak Reconstruction of Strong Product Graphs
Blaž Zmazek and Janez Žerovnik

University of Maribor, FME, Smetanova 17, 2000 Maribor, Slovenia
IMFM, Jadranska 19, SI-1111 Ljubljana, Slovenia.

We prove that the class of nontrivial connected strong product is weakly reconstructible. We also
show that any nontrivial connected thin strong product graph can be uniquely reconstructed from
each of its one-vertex-deleted deleted subgraphs.

Fibonacci cubes are the resonance graphs of fibonaccenes
Petra Žigert and Sandi Klavžar

University of Maribor, PEF, Koroška cesta 160, 2000 Maribor, Slovenia

Fibonacci cubes were introduced in 1993 and intensively studied afterwards. Fibonacci cubes are
precisely the resonance graphs of fibonaccenes. Fibonaccenes are graphs that appear in chem-
ical graph theory and resonance graphs reflect the structure of their perfect matchings. Some
consequences of the main result will also be presented.
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Department of Applied Mathematics, Faculty of Economics, Technical University, B. Němcovej,
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